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Abstract. We solve an asymptotic problem in the geometry of numbers, where we count the
number of singular n� n matrices where row vectors are primitive and of length at most T. Without
the constraint of primitivity, the problem was solved by Y. Katznelson. We show that as T ! 1, the

number is asymptotic to
ðn�1Þun

�ðnÞ�ðn�1Þn T
n2�n log ðTÞ for n5 3. The 3-dimensional case is the most problem-

atic and we need to invoke an equidistribution theorem due to W. M. Schmidt.
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1. Introduction

1.1. A basic problem in the geometry of numbers is counting integer matrices
with certain additional properties. In this paper we will solve a new counting
problem of this kind. Let us consider the set of singular n� n matrices with integer
entries. We are interested in the question how many among these matrices have
primitive row vectors, that is each row is not a nontrivial multiple of an integer
vector. We count the matrices according to the maximal allowed Euclidean length
of the rows. Without the constraint of primitivity the problem of counting such
matrices was solved by Katznelson [2]. We will find that for n5 3 a positive
proportion of integer singular matrices have all rows primitive.

Let PNnðTÞ be the counting function of the set PMnðTÞ of n� n singular
integer matrices, all of whose rows are primitive and whose Euclidian length is
at most T . That is, let

PMnðTÞ ¼ fM2MnðZÞ: detðMÞ ¼ 0; primitive rows vi2Zn; jvij4Tg;

and set PNnðTÞ ¼ jPMnðTÞj. In this paper we will determine the asymptotic
behaviour of PNn, as T!1.

Define a similar counting function NnðTÞ, where Nn counts n� n integer
matrices M with rows of length 4T , that is NnðTÞ ¼ jMnðTÞj, where

MnðTÞ ¼ fM2MnðZÞ: detðMÞ ¼ 0; rows vi; jvij4Tg: ð1Þ



Katznelson [2] showed that for n5 3,

NnðTÞ ¼
ðn� 1Þun

�ðnÞ Tn2�n log ðTÞ þ OðTn2�nÞ;

where the constant in the O-notation depends only on n. Recall that n!! denotes the
product of integers4n of the same parity as n. The constant un is given by:

un ¼
n
2

�
2ð2�Þm�1

ð2m�1Þ!!

�n
� �m
m! ; n ¼ 2m;

n
2

�
�m

m!

�n
� 2ð2�Þm
ð2mþ1Þ!! ; n ¼ 2mþ 1:

8<
: ð2Þ

Trivially, PNnðTÞ4NnðTÞ, and thus PNnðTÞ � Tn2�n log ðTÞ. Moreover,
PNnðTÞ � Tn2�n, since we can consider, for example, only matrices M with prim-
itive rows vi, which satisfy vn ¼ v1 and jvij4 T . A random vector in Zn is primi-
tive with a positive probability, that is, the number of primitive vectors whose
length is at most T , is �Tn. The number of such matrices is obviously �
ðTnÞn�1 ¼ Tn2�n. Combining the observations of this paragraph, we conclude that
Tn2�n � PNnðTÞ � Tn2�n log ðTÞ.

For n ¼ 2 an elementary argument shows that

PN2ðTÞ ¼
2�

�ð2ÞT
2 þ OðTÞ: ð3Þ

Our main result is:

Theorem 1. (i) For n5 4 we have

PNnðTÞ ¼
ðn� 1Þun

�ðnÞ�ðn� 1Þn T
n2�n log ðTÞ þ OðTn2�nÞ:

(ii) For n ¼ 3 we have

PN3ðTÞ ¼
2u3

�ð3Þ�ð2Þ3
T6 log ðTÞ þ OðT6 log log ðTÞÞ:

1.2. Another way to treat our problem is to consider it as a counting problem of
rational points with bounded height on a projective variety, see [1].

Let V � Pn�1 � � � � �Pn�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

be the projective variety where the determinant

vanishes. The height of a point X2Pn�1ðQÞ is defined by

H0ðXÞ ¼ j~XXj;

where ~XX is a primitive integral point in Zn representing X and j � j is the standard
Euclidian norm on Rn. Now, for Y ¼ ðY1; . . . ; YnÞ2V, define the height

HðYÞ ¼ max
14 i4 n

H0ðYiÞ:

Then PNnðTÞ is the number of points Y 2V of height HðYÞ4T .
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1.3. We will present now the main idea in the case n ¼ 3. If M is an integer
singular matrix, then all the rows of M lie in a 2-dimensional lattice � � Z3. Thus
we should count triples of vectors lying in a 2-dimensional sublattice of Z3 and sum
over all such lattices.

For a primitive �2Z3 we define a 2-dimensional lattice L� ¼ fv2Z3: v?�g ¼
�?. Denote the subset of all primitive points in L�, PL� ¼ fprimitive v2L�g and
PL�ðTÞ ¼ fv2PL�: jvj4Tg. Moreover, denote PA� ¼ fM2M3ðZÞ: rows in
PL�g, and PA�ðTÞ ¼ fM2PA�: jrowsj4Tg. Thus jPA�ðTÞj¼jPL�ðTÞj3. For
� 6¼�0 the intersection L� \ L�0 is a set of integer points on a line, and thus
jPA� \ PA�0 j4 23 ¼ 8. It can be shown that the contribution of such intersections
is negligible, and that

PNnðTÞ �
X

j�j�T2

0 jPL�ðTÞj3 ð4Þ

where the last sum is over primitive �2Z3, such that L� is ‘‘bounded by T’’ (see
Section 5). Now

PL�ðTÞ ¼
v2

�ð2Þj�j T
2 þ O

�
T log ðTÞ

j�1j

�
ð5Þ

(see Section 3), and summing the cube of the main term of PL�ðTÞ will give the
result.

A complication in dimension 3 is that for some of the lattices L� in the sum (4),
the error term in (5) is asymptotically greater than the main term. Such a phenom-
enon does not happen for higher dimensions. In order to show that this phenom-
enon is rare and the contribution of such lattices is negligible, we will use an
equidistribution theorem of Wolfgang Schmidt [4] (see Theorem 2).

1.4. Contents. We will use some known results of counting integer points in Z2,
or more generally, counting points of a sublattice ofZn, as well as counting primitive
points in such a sublattice. We will give some basic background on lattices in
Section 2 and some facts concerning counting lattice points will be given in Section
3. The goal of Sections 4 and 5 is to prove cases (ii) and (i) of Theorem 1
respectively.

2. Background on Lattices

In this section we will give some basic facts which deal with sublattices of Zn.
For general background see [5].

Definition. Let � be a lattice. A basis of �, f�1; �2; . . . ; �mg, such that the
product of the lengths of the vectors in it is minimized is called reduced. For such a
basis we have:

j�1j � j�2j � . . . � j�mj �� detð�Þ: ð6Þ
A basis that satisfies the last inequality has properties similar to a reduced one.

We say that � is bounded by T, if it has a reduced basis consisting of vectors of
length at most T . If a k-dimensional lattice has k linearly independent vectors, all
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of length at most T , it follows that this lattice is bounded by cT, for some constant
c that depends only on the dimension k. In that case we will treat it just as if it was
bounded by T, since it will affect only some constants in our upper bounds not
affecting the asymptotic behavior.

Also, for a lattice �, we will denote

N�ðTÞ ¼ jfv2�: jvj4Tgj
as well as

P�ðTÞ ¼ jfv2�: jvj4T ; v primitivegj:
An m-dimensional lattice � � Zn is called primitive if there is no m-dimen-

sional lattice �� properly containing �. In particular, each vector in any basis of a
primitive lattice is a primitive vector (the converse is not necessarily true). The
orthogonal lattice �? of � consists of all vectors v2Zn, such that v � u ¼ 0 for all
u2�. It is a primitive integral lattice of dimension n� m.

If � is a primitive lattice, then ð�?Þ? ¼ �. Also, in this case, it was shown in
[3] (Chapter 1, formula (4)), that

detð�Þ ¼ detð�?Þ ð7Þ

3. Counting Lattice Points

The goal of this section will be to give some expressions for the number of
integer points in a lattice, as well as estimations for the error terms of these
expressions, which correspond to primitive lattices.

The next lemma is a basic one, which could be found in different variations in
the literature, see e.g. [3], Lemma 2.

Lemma 1. Let � � Rn be an m-dimensional lattice, and let f�1; . . . ; �mg be a
reduced basis for �, sorted in increasing order of their norms. Denote j�ij ¼ �i for
14 i4m. Let � � Rm be an m-dimensional convex body containing m linearly
independent vectors of �, then

j� \ �j ¼ volð�Þ
detð�Þ þ O

�
volð@�Þ

�1 � . . . � �m�1

�
(the �0s in the denominator are all except for the greatest one).

Let vn be the volume of the standard n-dimensional unit ball, that is

vn ¼
�m

m! n ¼ 2m
2ð2�Þm
ð2mþ1Þ!! ; n ¼ 2mþ 1:

(

Lemma 2. Let � � Zn be an ðn� 1Þ-dimensional primitive lattice which is
bounded by T, for n5 3. Let f�1; �2; . . . ; �n�1g, be a reduced basis of �. Then:

(i) For n5 4 we have

P�ðTÞ ¼
vn�1

�ðn� 1Þ detð�Þ T
n�1 þ O

�
Tn�2

j�1j � j�2j � . . . � j�n�2j

�
:
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(ii) For n ¼ 3 we have

P�ðTÞ ¼
v2

�ð2Þ detð�Þ T
2 þ O

�
T log T

j�1j

�
:

Proof. Since� is primitive, every vector is a [possibly trivial] integer multiple of a

primitive vector in L, and thus N�ðTÞ ¼
PbTc

k¼1 P�

�
T
k

�
, hence by Moebius inversion

P�ðTÞ ¼
XbTc
k¼1

�ðkÞ N�

�
T

k

�
:

Using the last expression the result of Lemma 1, where m ¼ n� 1, and � is the
ðn� 1Þ-dimensional ball on the ðn� 1Þ-dimensional hyper-plane spanned by �,
we get

P�ðTÞ ¼
XbTc
k¼1

�ðkÞ
�

vn�1

detð�Þ

�
T

k

�n�1

þ O

�
Tn�2

kn�2 � j�1j � j�2j � . . . � j�n�2j

��

¼ vn�1T
n�1

det�

XbTc
k¼1

ð�ðkÞk�ðn�1Þ þ �0kðTÞÞ ¼
vn�1

�ðn� 1Þ detð�ÞT
n�1 þ �ðTÞ:

with error term �ðTÞ given by

�ðTÞ ¼
XbTc
k¼1

O

�
Tn�2

kn�2 � j�1j � j�2j � . . . � j�n�2j

�

þ vn�1 � Tn�1

det�

 XbTc
k¼1

�ðkÞk�ðn�1Þ � 1

�ðn� 1Þ

!
:

Thus, since j�ðnÞj4 1 for every n2N,

j�ðTÞj � 1

j�1j � j�2j � . . . � j�n�2j

 XbTc
k¼1

Tn�2

kn�2
þ Tn�1 �

���� X1
k¼bTcþ1

�ðkÞk�ðn�1Þ
����
!

� 1

j�1j � j�2j � . . . � j�n�2j

 
Tn�2

XbTc
k¼1

1

kn�2
þ Tn�1 � 1

Tn�2

!

We also used here the fact that j�1j � j�2j � . . . � j�n�2j � detð�Þ. Now in order to
obtain case (i) of the lemma use the convergence of the series

P1
k¼1

1
kn�2 for n5 4.

We use
PbTc

k¼1
1
k
� log ðTÞ in order to prove the other case of the lemma.

4. The Case n ¼ 3

In this section we will prove case (ii) of Theorem 1. The computation of the
main term is also valid in the case n5 4, while for n ¼ 3 we should be more
delicate in order to obtain the appropriate error term. Thus every lemma which is
to be used in Section 5 will be stated for general n in the current section.

The main difficulty in this case is that the error term for estimating P� (see
Lemma 2, case (ii)) could be asymptotically greater than the main term itself. In
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order to show that such lattices are rare, and thus their contribution to the error
term is asymptotically negligible, we will need an equidistribution result of
Schmidt [4] for the space of lattices.

Suppose M is a singular matrix. This means that there exists a vector 0 6¼�2Zn,
such that all rows of M are orthogonal to �. Thus all the rows of M lie in a ðn� 1Þ-
dimensional lattice �?. Since multiplying � by a constant does not affect this property
we can assume that � is primitive. Our basic idea is to sum the number of n-tuples of
primitive vectors with bounded length lying in �, where � � Zn runs over all such
lattices. We will see that we can limit the sum to a finite number of such lattices.

Let �2Zn be primitive. Recall that �? denotes the ðn� 1Þ-dimensional ortho-
gonal dual lattice to �, that is the primitive ðn� 1Þ-dimensional lattice in Zn which
consists of all vectors in Zn which are orthogonal to �. Our discussion leads to the
following definitions: denote L� ¼ �?,

L�ðTÞ ¼ fv2L�: jvj4Tg;
PL� ¼ fprimitive v2L�g;

PL�ðTÞ ¼ PL� \ L�ðTÞ:
Given � denote by A� the set of matrices whose rows lie in L�:

A� ¼ fM2MnðZÞ: M � � ¼ 0g ¼ L� 	 L� 	 � � � 	 L�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

; ð8Þ

Also denote by PA� the subset of matrices in A�, whose rows are primitive.
Obviously,

PA� ¼ PL� 	 PL� 	 � � � 	 PL�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

Denoting by A�ðTÞ and PA�ðTÞ the set of matrices in A� with (primitive) rows
in L� of length 4T , we clearly have:

A�ðTÞ ¼ L�ðTÞn;
and

PA�ðTÞ ¼ PL�ðTÞn: ð9Þ

The next lemma connects between the terms just defined with our problem.

Lemma 3 ([2], Lemma 4). Let X2MnðTÞ. Then there is a primitive �2Zn,
such that A� is bounded by T and X2A�.

Remarks. (i) As it was mentioned, ‘‘bounded by T’’ means bounded by cnT,
where the constant cn > 0 depends only on n. We will see that cn doesn’t affect our
computations, so we will ignore it everywhere except the computation of the main
term.

(ii) If A� is bounded by T then j�jn ¼ detðA�Þ � Tn2�n by (6) and (7), and
thus j�j � Tn�1. The converse is not true, since there are primitive vectors �2Zn,
such that j�j4Tn�1, but A� is not bounded by T. We will call such vectors ‘‘bad’’;
they will only have a minor influence on the asymptotics.

76 I. Wigman



(iii) In every case we will deal with a reduced basis, the vectors will be ordered
in increasing order of their norms, unless specified otherwise.

We may conclude from Lemma 3, that MnðTÞ ¼
S00

j�j�Tn�1 A�ðTÞ and also

PMnðTÞ ¼
[

j�j�Tn�1

00
PA�ðTÞ: ð10Þ

Here and everywhere in this paper, we use
S00

and
P00

to denote a union=sum over
primitive vectors �2Zn, for which �? is T-bounded. Analogously,

S0
and

P0
will

denote a union=sum over primitive vectors not saying anything about the ortho-
gonal dual.

It is natural to relate the cardinality of the left side of (10) to the sum of the
cardinalities of the right side:

PNnðTÞ ¼
1

2

X
j�j�Tn�1

00 jPA�ðTÞj þ �01ðTÞ

¼ 1

2

X
j�j�Tn�1

0 jPA�ðTÞj þ �01ðTÞ þ �03ðTÞ

The factor of 1
2

is due to the fact that PA� ¼ PA��; the terms �01ðTÞ and �03ðTÞ are the
error terms which implied by the intersections of PA� for different � and the contribu-
tion of the so called ‘‘bad’’ vectors respectively (a ‘‘bad’’ vector is a primitive vector �,
with j�j � Tn�1 such that �? is not bounded by T), which do not allow us to get an
estimate of the primitive vectors contained within it. However j�01ðTÞj4 j�1ðTÞj and
j�03ðTÞj4 j�3ðTÞj, where �1, �3 are the analogous error terms in the case of the problem
solved in [2], which were shown to be OðTn2�nÞ ([2], pp 130–133). Thus:

PNnðTÞ ¼
1

2

X
j�j�Tn�1

0 jPA�ðTÞj þ OðTn2�nÞ

¼ 1

2

X
j�j�Tn�1

0 jPL�ðTÞjn þ OðTn2�nÞ: ð11Þ

For n ¼ 3, we would like to demonstrate how we can achieve the bound for �01,
since in our case it is quite simple. Indeed, the only matrices in PA� \ PA�0 with

primitive � 6¼ 
�0 are of the form

 
v


v


v

!
with primitive v2Z3. Conversely, given

a primitive v2Z3, its contribution to the sum in (11) is 8PNv?ðc3T
2Þ, where the

factor 8 is the number of all possible signs of the 3 rows. Hence:

j�01ðTÞj �
X
jvj4 T

PNv?ðT2Þ4
X
jvj4T

Nv?ðT2Þ �
X
jvj4T

T4

jvj :

Now
P

jvj4T
1
jvj � T2 where the last equality is due to summation by parts, making

use of the fact that jfprimitive v2Z3 with jvj4Tgj � T3. Thus j�01ðTÞj � T6.
At this point we would like to substitute the result of Lemma 2 into (11). This

is exactly what we are going to do in case n5 4 (see Section 5). However, for
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n ¼ 3, the error term could be asymptotically greater than the main term. In order
to overcome this difficulty, we will first reduce the last sum to ‘‘convenient’’
lattices, that is those with not too big determinant (Lemma 4) and where the norms
of vectors in a reduced basis do not differ too much (Lemma 5). Corollary 1 will
show that for such lattices the error term is negligible relative to the corresponding
main term.

We will adapt the following notations:

Notations. For an ðn� 1Þ-dimensional lattice � � Zn, we will denote the main
term of ðP�ðTÞÞn as well as the corresponding error term:

cðT ;�Þ ¼ vnn�1

ðdetð�ÞÞn�ðn� 1Þn T
n2�n; �ðT ;�Þ ¼ ðP�ðTÞÞn � cðT ;�Þ: ð12Þ

Moreover, for a vector �2Zn denote

cðT ; �Þ ¼ cðT ; �?Þ; �ðT ; �Þ ¼ �ðT ; �?Þ: ð13Þ

Lemma 4. For any constant A> 0, the following estimate holds:X
T2

ðlog TÞA
< det ð�Þ4T2

P�ðTÞ3 � T6 log log T ;

where the sum is over primitive T-bounded lattices � � Z3.

Proof. We will use here the trivial inequality P�ðTÞ4N�ðTÞ. Now, from

Lemma 1, N�ðTÞ ¼ �T2

detð�Þ þ O
�

T
j�1j
�
� T2

detð�Þ, where �1 ¼ �1ð�Þ is the shortest

vector in a reduced basis of � (that is, the shortest nontrivial vector in �).

The last inequality is due to � being bounded by T, since it implies
T2

detð�Þ � T2

j�1j�j�2j ¼
T
j�1j �

T
j�2j 5

T
j�1j. We will denote by nðrÞ the number of primitive

two-dimensional lattices � � Z3 with detð�Þ ¼ r and NðtÞ ¼
Pbtc

r¼1 nðrÞ. Then

NðtÞ � t3; ð14Þ

since such � are determined by a primitive vector 
� orthogonal to it with
j�j ¼ detð�Þ4 t; the number of such vectors is � t3. ThusX

T2

ðlog TÞA
< detð�Þ4 T2

ðP�ðTÞÞ3 � T6
X

T2

ðlog TÞA
< detð�Þ4 T2

1

detð�Þ3

4 T6
XT2

r¼d T2

ðlogTÞA
e

nðrÞ
r3

� T6

"
NðtÞ
t3

�����
T2

T2

ðlog TÞA

þ
ðT2

T2

ðlogTÞA

NðtÞ
t4

dt

#

� T6 log log T :
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We used here summation by parts, substituting (14) to get an estimate for NðtÞ in
order to obtain the last inequality. This concludes the proof of the lemma. It should
be noted, that in addition to what was originally stated, we proved here also the
following inequality: X

T2

ðlog ðTÞÞA
< det ð�Þ4 T2

cðT ;�Þ � T6 log ðlog ðTÞÞ; ð15Þ

where cðT ;�Þ is as in (12). &

We will need the following theorem, which is special case of Theorem 5 from [4].

Theorem 2. For a5 1 let Nða; TÞ be the number of lattices � � Z3 with
successive minima, f�1; �2g which satisfy �2

�1
5 a, and dð�Þ4T , then

Nða; TÞ ¼ const � arcsin

�
1

2a

�
T3 þ O

�
a�

1
2 � T 5

2

�
:

We will use Theorem 2 in order to prove the following lemma:

Lemma 5. For any constants A> 0, B> 1, the following estimate holds:X
detð�Þ< T2

ðlog TÞA

j�2 j
j�1 j

> ðlog TÞB

P�ðTÞ3 � T6

ðlog TÞB�1
;

where the sum is over primitive T-bounded lattices � � Z3.

Proof. We will use summation by parts as well as Theorem 2 to bound the sum.
In order to do so we will denote

mTðrÞ ¼ jf� � Z3; 2-dimensional lattice: detð�Þ ¼ r; j�2j=j�1j> ðlog ðTÞÞBgj:
so that

P
r4 t mTðrÞ ¼ NððlogTÞB; tÞ.

Using the trivial inequality P�ðTÞ4N�ðTÞ � T2

detð�Þ, as in the proof of Lemma
4, we have: X

detð�Þ4 T2

ðlog TÞA

j�2 j
j�1 j

> ðlogTÞB

ðP�ðTÞÞ3

� T6
X

detð�Þ4 T2

ðlogTÞA

j�2 j
j�1 j

> ðlog TÞB

1

ðdetð�ÞÞ3

¼ T6
X	 T2

ðlogTÞA



r¼1

mTðrÞ
r3
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� T6
X	 T2

ðlogTÞA



r¼2

mTðrÞ
r3

� T6

"
NððlogTÞB; tÞ

t3

�����
T2

ðlogTÞA

2

þ
ð T2

ðlogTÞA

2

NððlogTÞB; tÞ
t4

dt

#

By Theorem 2, this is �T6=ðlog TÞB�1
as required.

As in the case of Lemma 4, we proved here also:

X
detð�Þ< T2

ðlog TÞA

j�2 j
j�1 j

> ðlog TÞB

cðT ;�Þ � T6

ðlog TÞB�1
; ð16Þ

&

Lemma 6. Let � � Z3 be a 2-dimensional lattice, with a reduced basis
f�1; �2g, such that detð�Þ4 T2

ðlogTÞA and
j�2j
j�1j 4 ðlog TÞB. Then

T log T

j�1j
� T2

detð�Þ
1

ðlog TÞ
A�B

2
�1

: ð17Þ

Proof.

j�2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�2j
j�1j

ðj�1jj�2jÞ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog TÞB detð�Þ

q
� T

ðlog TÞ
A�B

2

:

Therefore,

T log T

j�1j
¼ T log T

j�1jj�2j
j�2j �

T log T

detð�Þ
T

ðlog TÞ
A�B

2

¼ T2

detð�Þ
1

ðlog TÞ
A�B

2
�1

;

which concludes the proof of the lemma. &

We will always want to choose the constants A and B, for which A�B
2

� 1> 0,
since in this case the error term of a certain counting function will be asymptotically
less than the corresponding main term, as we will notice in the following corollary,
which follows immediately from the previous lemma. In fact, we would like to
choose constants, that will satisfy

A� B

2
� 15 1; A> 0; B> 1 ð18Þ

for example, A¼ 6, B¼ 2, so this error term will not affect the general error term.
Using the proof of Lemma 8 below with case (ii) of Lemma 2 and substituting

the result of Lemma 6 we obtain:
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Corollary 1. Let �2Z3 with j�j4 T2

ðlog TÞA, such that
j�2j
j�1j 4 ðlog TÞB, for

constants A, B, which satisfy (18). Then, under the notations of (12),

�ðT ; �Þ � cðT ; �Þ � 1

ðlog TÞ
A�B

2
�1

¼ oðcðT ; �ÞÞ:

We are now ready to finish the proof of case (ii) of Theorem 1.
Recall (11) and choose the constants A, B, which satisfy (18). We will ignore

the difference between � and 4, which is not significant for bounding the error
terms as well as computation of the main term, as we will see a bit later. Thus:X

j�j4T2

0 jPA�ðTÞj

¼
X

j�j4 T2

0ðP�?ðTÞÞ3

¼
X

j�j4 T2

ðlogTÞA

0ðP�?ðTÞÞ3 þ
X

T2

ðlogTÞA
< j�j4 T2

0ðP�?ðTÞÞ3

¼
X

j�j4 T2

ðlogTÞA

j�2 j
j�1 j

4 ðlog TÞB

0ðP�?ðTÞÞ3 þ
X

j�j4 T2

ðlogTÞA

j�2 j
j�1 j

> ðlog TÞB

0ðP�?ðTÞÞ3 þ OðT6 log ðlog TÞÞ

¼
X

j�j4 T2

ðlogTÞA

j�2 j
j�1 j

4 ðlog TÞB

0ðP�?ðTÞÞ3 þ OðT6 log ðlog TÞÞ:

We used here Lemmas 4 and 5 (recall that B> 1 because of (18)).
Substituting the result of Corollary 1 into the last sum we get:X

j�j4 T2

ðlogTÞA

j�2 j
j�1 j

4 ðlog TÞB

0ðP�?ðTÞÞ3

¼
X

j�j4 T2

ðlogTÞA

j�2 j
j�1 j

4 ðlog TÞB

0ðcðT ; �ÞÞ
�

1 þ O

�
1

ðlog TÞ
A�B

2
�1

��

¼
�

1 þ O

�
1

ðlog TÞ
A�B

2
�1

�� X
j�j4 T2

ðlogTÞA

j�2 j
j�1 j

4 ðlog TÞB

0ðcðT ; �ÞÞ

¼
�

1 þ O

�
1

ðlog TÞ
A�B

2
�1

�� X
j�j4 T2

ðlog TÞA

0ðcðT ; �ÞÞ þ OðT6Þ

¼
�

1 þ O

�
1

ðlog TÞ
A�B

2
�1

�� X
j�j4 T2

0ðcðT ; �ÞÞ þ OðT6 log ðlog TÞÞ:
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We used here Corollary 1 as well as (15) and (16). It should be noted that the usage
of Lemmas 4 and 5 as ‘‘black boxes’’ is not enough in this case, since each
summand of the current series is not necessarily less or equal to the corresponding
one in these lemmas (because of the error term). Substituting (12) we obtain
(writing � rather than 4 in the domain of summation for consistency with (11)).

PN3ðTÞ �
X

j�j�T2

0ðcðT ; �ÞÞ ¼ T6

�ð2Þ3
�
X

j�j�T2

0 v3
2

j�j3
: ð19Þ

It remains to compute the inner sum. The same computation holds for n5 4
and will be used in Section 5, so we will state it for general n.

Lemma 7. X
j�j4M

0 vnn�1

j�jn ¼ 2un

�ðnÞ log ðMÞ þ Oð1Þ: ð20Þ

Proof of Lemma 7. Using Moebius inversion on the set of multiples of each
primitive vector separately, we obtain:X

j�j4M

0 vnn�1

j�jn ¼
XM
k¼1

�ðkÞk�n
X

14 juj4 bM=kc

vnn�1

jujn : ð21Þ

Thus, just as in [2], we get:

X
j�j4M

0 vnn�1

j�jn ¼
XM
k¼1

�ðkÞk�nvnn�1

ð
14 jxj4M=k

dx

jxjn þ Oð1Þ: ð22Þ

The reason that the last equality holds is that���� X
14 juj4M=k

vnn�1

jujn �
ð

14 jxj4M=k

dx

jxjn
�����

ð
14 jxj4M=k

dx

jxjnþ1

4
ð
jxj5 1

dx

jxjnþ1
<1;

and the fact that the series
P1

k¼1 �ðkÞk�n converges absolutely. Computing the last
integral in (22) in polar coordinates we get:

X
j�j4M

0 vnn�1

j�jn �
XM
k¼1

�ðkÞk�n � 2un � ðlog ðMÞ � log kÞ

¼ 2un

�ðnÞ log ðMÞ þ Oð1Þ;

with un ¼ vn
n�1

2

Ð
Sn�1 dx, where the last integral is computed in the usual spherical

[polar] coordinates. Thus, using the formula for vn as well as the fact that
vn ¼ 1

n

Ð
Sn�1 dx, yields (2).
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Thus, X
j�j4M

0 vnn�1

j�jn � 2un

�ðnÞ logM; ð23Þ

where the error term is O(1), which yields (20) and completes the proof of
Lemma 7. &

Substituting the result of the last lemma in (19) with M ¼ cn � T2, where cn is
the constant implied by the ‘‘�’’-notation in (11), will yields case (ii) of Theorem
1. The error term Oð1Þ does not bother us, since after multiplying it by
const � Tn2�n, while substituting it in (11), we will get an error term of
OðTn2�nÞ, and adding it to other error terms will not increase an estimate for
the general error term of the asymptotics. As mentioned before, the constant cn
does not affect the computation, since we substitute it in a logarithm in any
case.

5. The Case n5 4

We will need the following lemma:

Lemma 8. Let �2Zn be a primitive vector, such that its orthogonal dual, �? is
T-bounded. Let f�1; �2; . . . ; �n�1g be a reduced basis of �?. Then for n5 4 we
have

jPA�ðTÞj ¼
vnn�1

�nðn� 1Þj�jn T
n2�n

þ O

�
Tn2�n�1

j�1jn � j�2jn � . . . � j�n�2jn � j�n�1jn�1

�
:

Proof. Due to (9), we have jPA�ðTÞj ¼ ðP�?ðTÞÞn, and substituting the case (i) of
Lemma 2 in the last equality, as well as the fact that detð�?Þ ¼ j�j, because of (7), we

get: jPA�ðTÞj ¼
�

vn�1

�ðn�1Þj�j T
n�1 þ O

�
Tn�2

j�1j�j�2j�...�j�n�2j
��n ¼ ðaþ bÞn. We will use the

binomial formula for the last expression. The first summand (that is, an) is just the
main term in the result of the lemma. Now, since the lattice �? is T-bounded, a is
asymptotically greater than b (that is a � b), and thus the only asymptotically sig-
nificant summand in the binomial is the second one (that isn � an�1b). The coefficient n
is constant, and thus, by (6), this is the error term we just stated in the lemma. &

Notations. In this section we will use the notations in (13) as well.
Substituting the result of Lemma 8 into (11), we obtain:

PNnðTÞ ¼
1

2

X
j�j�Tn�1

0
�

vnn�1

�nðn� 1Þj�jn T
n2�n þ �ðT ; �Þ

�
þ OðTn2�nÞ

¼ Tn2�n

2 � �nðn� 1Þ �
X

j�j�Tn�1

0 vnn�1

j�jn þ �02ðTÞ þ OðTn2�nÞ; ð24Þ
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with

�02ðTÞ �
X

j�j4 Tn�1

0 j�ðT ; �Þj: ð25Þ

We will prove in the end of the section that �02ðTÞ � Tn2�n.

Using (20) with M ¼ cnT
n�1, (where cn is the constant implied by the ‘‘�’’

-notation in (11)) in (24) will imply

PNnðTÞ ¼
ðn� 1Þun

�ðnÞ�ðn� 1Þn T
n2�n logT þ OðTn2�nÞ

which ends the proof of Theorem 1 (i).
Just as in case n ¼ 3, the error term Oð1Þ does not bother us. Thus,

PNnðTÞ ¼ ðn�1Þun
�ðnÞ�ðn�1Þn T

n2�n log T þ �0ðTÞ, where �0ðTÞ is the error term of this

asymptotics. Accumulating all the error terms we confronted with and assuming
�02ðTÞ � Tn2�n (which we will prove immediately), will imply j�0ðTÞj � Tn2�n.

Error term. The only error term which is not less or equal to the corresponding
error term in [2] is �02. However in this case, we can immediately bound it given the
results of the work that was already done by Katznelson.

Under the notations (13), for n5 4 we have, due to (25) and Lemma 8:

�02ðTÞ �
X

j�j4 Tn�1

0 j�ðT ; �Þj �
X

j�j4 Tn�1

0 Tn2�n�1

j�1jn � j�2jn � . . . � j�n�2jn � j�n�1jn�1
:

From the definition of
P0

and
P00

, it is obvious that
P00 4

P0
as long as only

nonnegative numbers are involved. The inequalityX
j�j4 Tn�1

00 Tn2�n�1

j�1jn � j�2jn � . . . � j�n�2jn � j�n�1jn�1
� Tn2�n

was showed in [2] (pages 130–133) in the course of proving that �2ðTÞ � Tn2�n,
where �2ðTÞ is the corresponding error term in the case of NnðTÞ. &
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